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ABSTRACT
Strong-field quantum electrodynamics (SF-QED) plays a crucial role in ultraintense laser–matter interactions and demands sophisticated
techniques to understand the related physics with new degrees of freedom, including spin angular momentum. To investigate the impact
of SF-QED processes, we have introduced spin/polarization-resolved nonlinear Compton scattering, nonlinear Breit–Wheeler, and vacuum
birefringence processes into our particle-in-cell (PIC) code. In this article, we provide details of the implementation of these SF-QED modules
and share known results that demonstrate exact agreement with existing single-particle codes. By coupling normal PIC simulations with
spin/polarization-resolved SF-QED processes, we create a new theoretical platform to study strong-field physics in currently running or
planned petawatt or multi-petawatt laser facilities.

© 2023 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0163929

I. INTRODUCTION
Laser–matter interactions can trigger strong-field quantum-

electrodynamics (SF-QED) processes when the laser intensity I0
reaches or exceeds 1022 W/cm2.1,2 For example, when the laser
intensity is of the order of 1021–1022 W/cm2, i.e., the normalized
peak laser field strength parameter a0 ≡ eE0/mecω0 ∼ 10, electrons
can be accelerated to GeV energies3,4 (with Lorentz factor γe ∼ 103

or higher) in a centimeter-long gas plasma, where −e and me are
the charge and mass of the electron, E0 and ω0 are the electric
field strength and angular frequency of the laser, and c is the
speed of light in vacuum (here, for convenience, it is assumed that
ω0 = 2πc/λ0 and that the wavelength of the laser is λ0 = 1 μm).
When the laser is reflected by a plasma mirror and collides with
the accelerated electron bunch, the transverse electromagnetic (EM)
field in the electron’s instantaneous frame can reach the order of
a′ ≃ 2γa0 ∼ 104–105. Such a field strength is close to the QED critical
field strength (Schwinger critical field strength) ESch ≡ m2

e c3/eh̵, i.e.,
aSch = mec2/hω0 ≃ 4.1 × 105, within one or two orders of magnitude.

In this regime, the probabilities of nonlinear QED processes are
comparable to those of linear ones, and depend on three parameters
as W(χ, f , g), with

χ ≡
eh̵
√
(Fμνpμ)2

m3c4 ˜
a′

aSch
, f ≡ e2h̵2FμνFμν

4m4c6 ˜
aE

2 − aB
2

4a2
Sch

,

g ≡ e2h̵2FμνFμν∗

4m4c6 ˜
aE

2
⋅aB

2

4a2
Sch

,

where aE and aB denote the normalized field strengths of the electric
and magnetic components, respectively.5,6 For most cases of weak-
field (a0 ≪ aSch) conditions, f , g ≪ χ2, and W(χ, f , g) ∼W(χ), i.e.,
the probability depends on only a single parameter χ. For elec-
trons and positrons, nonlinear Compton scattering (NCS, e + nωL
→ e′ + ωγ) is the dominant nonlinear QED process in the strong-
field regime, whereas for photons, nonlinear Breit–Wheeler (NBW)
pair production (ωγ + nωL → e+ + e−) is the dominant process,
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where ωL and ωγ denote the laser photon and the emitted γ-photon,
respectively, and n is the photon absorption number.

Apart from these kinetic effects, spin/polarization effects also
arise with the possibility of generating polarized high-energy par-
ticle beams or when particles traverse large-scale intense transient
fields in laser–plasma interactions. Classically, the spin of a charged
particle will precess around the instantaneous magnetic field, i.e.,
ds/dt ∝ B × s, where s denotes the classical spin vector.7 In storage
rings, owing to radiation reaction, the spin of an electron/positron
will flip to the direction parallel/antiparallel to the external magnetic
field in what is known as the Sokolov–Ternov effect8 (an unpolar-
ized electron beam will be polarized to a degree of ∼92.5%), and
a similar process also occurs in NCS.9–11 Some recent studies have
shown that with specific configurations, for example, when ellipti-
cally or linearly polarized lasers scatter with high-energy electron
bunches (or plasmas), the polarization degree of the electrons can
reach 90% and be used to diagnose transient fields in plasmas.12,13

Meanwhile, the photons created by NCS can be polarized, and when
these polarized photons decay into electron/positron pairs, the con-
tribution to the probability from polarization can reach ∼30%,14

and will be inherited by the subsequent QED cascade. For exam-
ple, in laser–plasma/beam interactions, the polarization degree for
linearly polarized (LP) photons is about 60% or higher, and for circu-
lar polarized (CP) γ-photons, it can reach 59% when longitudinally
polarized primaries are employed.11,15–17

Analytical solutions in the case of ultraintense laser-matter
interactions are scarce owing to the high nonlinearity and com-
plexity of the problem. Moreover, the microlevel processes such as
ionization, recombination, and Coulomb collisions, coupled with
the complicated configurations of lasers and plasmas, make explicit
derivations almost impossible. Fortunately, computer simulation
methods provide alternative and more robust tools to study those
unsolvable processes, even in more realistic situations.18 In general,
simulation methods for laser–plasma (ionized matter) interactions
can be categorized as kinetic or fluid simulations: specifically, kinetic
methods include the Fokker–Planck (F–P) equation (or the Vlasov
equation for the collisionless case) and the particle-in-cell (PIC)
method, while fluid methods mainly use the magnetohydrodynamic
(MHD) equations.19 Among these methods, both F–P and MHD
discretize the momentum space of particles and are prone to the
nonphysical multistream instability, which may obscure the real
physics, such as the emergence of turbulence, physical instabili-
ties, etc. In comparison, the PIC method can provide much more
detailed information on the discrete nature and intrinsic statistical
fluctuations of the system, regardless of the stiffness of the problem.
Therefore, the PIC method has been widely used in the simulation
of ultraintense laser–plasma interactions.18–20

Thanks to emerging PIC simulation methods, the develop-
ment of parallelism, and large-scale cluster deployment, simulations
of laser–plasma wakefield acceleration, laser ion acceleration, THz
radiation, as well as SF-QED, have become accessible for general
laser–plasma scientists.18,21–24 However, the spin and polarization
properties of the plasma particles and QED products have not been
widely considered in mainstream studies, owing to a lack of appro-
priate algorithms. In some recent studies, spin- and-polarization
resolved SF-QED processes have been investigated in laser–beam
colliding configurations, and it has been shown that these processes
are prominent in generating polarized beams.10,11,14,16,17,25 Locally

FIG. 1. Standard particle-in-cell (PIC) loop with four kernel parts.

constant approximations of the relevant probabilities can be readily
introduced into any PIC code.

In this paper, we briefly review the common PIC simu-
lation algorithms and present some recent implementations in
spin/polarization averaged/summed QED. The formulas and algo-
rithms for spin/polarization-dependent SF-QED processes are given
in detail and have been incorporated into our PIC code SLIPs
(“spin-resolved laser interaction with plasma simulation code”). The
formulas and algorithms presented in this paper, especially the
polarized version, can be easily adopted by any other PIC code and
used to simulate the ultraintense laser–matter interactions that are
already relevant or will become so in near-future multi-petawatt
(PW) to exawatt (EW) laser facilities,26 such as Apollo,27,28 ELI,29

SULF,30 and SEL. Throughout the paper, Gaussian units will be
adopted, and all quantities are normalized as follows: time t with
1/ω (i.e., t′ ≡ t/(1/ω) = ωt), position x with 1/k = λ/2π, momentum
p with mec, velocity v with c, energy ε with mec2, EM fields E and B
with mecω/e, force F with mecω, charge q with e, charge density ρ
with k3e, and current density J with k3ec, where λ and ω = 2πc/λ are
the reference wavelength and frequency, respectively.

II. PIC ALGORITHM
Simulation of laser–plasma interactions involves two essen-

tial components: the evolution of the EM field and the motion
of particles. The corresponding governing equations are the
Maxwell equations (with either A–ϕ or E–B formulations) and the
Newton–Lorentz equations. Therefore, the fundamentals of PIC
codes consist of four kernel parts: force depositing to particles, parti-
cle pushing, particles depositing to charge and current densities, and
solving the Maxwell equations; see Fig. 1. Here, we review each part
briefly (these algorithms are used in SLIPs) and refer to the standard
literature or textbooks for more details.18,19

A. Particle pushing
When radiation reaction is weak (the radiation power is much

smaller than the energy gain power), the motion of charged particles
is governed by the Newton–Lorentz equations:

dp
dt
= q

m
(E + β × B), (1)

dx
dt
= p
γ

, (2)

where p ≡ γmv, x, q, m, γ, v, and β ≡ v/c are the momentum, posi-
tion, charge, mass, Lorentz factor, velocity, and normalized velocity

Matter Radiat. Extremes 8, 064002 (2023); doi: 10.1063/5.0163929 8, 064002-2

© Author(s) 2023

https://pubs.aip.org/aip/mre


Matter and
Radiation at Extremes

RESEARCH ARTICLE pubs.aip.org/aip/mre

of a particle, respectively. These coupled equations are discretized
using a leapfrog algorithm as

pn+1/2 − pn−1/2

Δt
= q

m
(En + pn

γn × Bn), (3)

xn+1 − xn

Δt
= vn+1/2, (4)

and are solved using the standard Boris rotation:31–33

pn−1/2 = p− − qΔt
2m

En, (5)

pn+1/2 = p+ + qΔt
2m

En, (6)

p′ = p− + p− × τ, (7)

p+ = p− + p′ × Ϛ, (8)

τ = qΔt
2mγn Bn, (9)

Ϛ = 2τ
1 + τ2 , (10)

where γn =
√

1 + (p−)2 =
√

1 + (p+)2. The updates in momen-
tum and position are asynchronized by half a time step, i.e., a
leapfrog algorithm is used here. This leapfrog algorithm ensures the
self-consistency of the momentum and position evolutions.

B. Field solving
In ultraintense laser–plasma interactions, the plasma particles

are assumed to be distributed in vacuum and immersed in the EM
field. Therefore, the field evolution is governed by the Maxwell equa-
tions in vacuum with sources. After normalization, the Maxwell
equations are given in differential form as

∇ ⋅ E = ρ, (11)

∇ ⋅ B = 0 (12)

∇× E = −∂B
∂t

, (13)

∇× B = ∂E
∂t
+ J. (14)

The standard finite-difference method in the time domain for
the Maxwell equations is to discretize field variables on a spatial
grid and advance forward in time. Here, following the well-known
Yee-grid approach,34 we put E and B as in Fig. 2(a), which auto-
matically satisfies the two curl equations. For lower-dimensional
simulations, extra dimensions are squeezed, as shown in the 2D

FIG. 2. (a) and (b) Yee grid and position of each field component in 3D and 2D
cases, respectively. In (b), the z direction is squeezed.

example in Fig. 2(b). In these dimension-reduced simulations, field
components in the disappeared dimensions can be seen as uniform,
i.e., the gradient is 0.

Using Esirkepov’s method of current deposition,35 the cur-
rent is calculated from the charge density via charge conserva-
tion, i.e., ∂tρ +∇ ⋅ J = 0. Once the initial condition obeys Gauss’s
law, ∇ ⋅ E = ρ, this law is automatically embedded. This can be
verified by taking the gradient of Eq. (14): 0 = ∇ ⋅ (∇× B) = ∂t
(∇ ⋅ E) +∇ ⋅ J = ∂t(∇ ⋅ E − ρ), i.e., the temporal variation in the
violation of Gauss’s law is 0. Therefore, in the field solver, only the
two curl equations are solved. We take the Ey and Bz components as
examples here:

1D case (squeezing the y and z directions):

En+1
y − En

y

Δt
∣
i+1/2
= − Bi+1 − Bi

Δx
∣
n+1/2

z
− Jn+1/2

y,i+1/2,

Bn+1/2
z − Bn−1/2

z

Δt

RRRRRRRRRRRi
= − Ei+1/2 − Ei−1/2

Δx
∣
n

y
;

(15)

2D case (squeezing the z direction):

En+1
y − En

y

Δt
∣
i+1/2, j

= − Bi+1, j − Bi, j

Δx
∣
n+1/2

z
− Jn+1/2

y,i+1/2, j ,

Bn+1/2
z − Bn−1/2

z

Δt

RRRRRRRRRRRi+1/2, j

= − Ei+1/2, j − Ei+1/2, j

Δx
∣
n

y

+ Ei+1/2, j+1/2 − Ei+1/2, j−1/2

Δy
∣
n+1/2

x
; (16)

3D case:

En+1
y − En

y

Δt
∣
i+1/2, j,k+1/2

= − Bi+1, j,k+1/2 − Bi, j,k+1/2

Δx
∣
n+1/2

z

+ Bi+1/2, j,k+1 − Bi+1/2, j,k

Δz
∣
n+1/2

x

− Jn+1/2
y,i+1/2, j,k+1/2,

Bn+1/2
z − Bn−1/2

z

Δt

RRRRRRRRRRRi, j,k+1/2

= − Ei+1/2, j,k − Ei−1/2, j,k

Δx
∣
n

y

+ Ei+1/2, j+1,k − Ei+1/2, j,k

Δy
∣
n

x
. (17)
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Here, the lower indices with i, j, k denote the spatial discretiza-
tion and upper indices with n indicate the time discretization. The
time indices are assigned using the leapfrog algorithm; see Sec. II F.

C. Current deposition
We calculate the charge current density using Esirkepov’s

method, which conserves charge by satisfying Gauss’s law35

∂tρ +∇ ⋅ J = 0, (18)

and removes the need for Coulomb correction.19 This algorithm
computes the charge density at time steps t − 1

2Δt and t + 1
2Δt on

each grid cell from the particle positions and velocities, i.e.,

ρn+1/2
i, j,k = 1

ΔV∑r
W(xn

r +
1
2

vn+1/2Δt)qr , (19)

ρn−1/2
i, j,k = 1

ΔV∑r
W(xn

r −
1
2

vnΔt)qr , (20)

δnρ = ρn+1/2 − ρn−1/2, (21)

where r denotes the particle index, ∣xr − xi,j,k∣ ≤ (Δx,Δy,Δz), and
ΔV = ΔxΔyΔz is the cell volume. We then interpolate the charge
density to the current grid to obtain the current density; see Ref. 35
for more details.

D. Force deposition
We deposit the updated field variables from the Maxwell solver

to the particles for calculating acceleration or further SF-QED
processes. The field deposition to the particles follows a similar
procedure as the charge density deposition. For each particle at posi-
tion xr , we find its nearest grid point (i, j, k)g = floor(xr/Δx + 1

2)
and its nearest half grid point (i, j, k)h = floor(xr/Δx), where Δx
= (Δx,Δy,Δz) is the spatial grid size. We then weight the field to the
particle by summing over all nontrivial terms of W(i, j, k) ⋅ F(i, j, k),
where W(i, j, k) is the particle weighting function (see Sec. II E for
more details) on the grid (half grid) (i, j, k) and F(i, j, k) is the field
component of E or B on the spatial grid with proper staggering
according to Fig. 2.

E. Particle shape function
The weighting function W in the current and force deposition

is determined by the form factor (shape factor) of the macroparticle,
which is a key concept in modern PIC algorithms. The form fac-
tor gives the macroparticle a finite size (composed of thousands of
real particles) and reduces the nonphysical collisions.19 Various par-
ticle shape function models have been proposed, such as the nearest
grid point (NGP) and cloud-in-cell (CIC) methods. The NGP and
CIC methods use the nearest one and two grid fields as the full
contribution, respectively. Higher orders of particle shape function
can suppress unphysical noise and produce smoother results. We
use a triangle shape function (triangular shape cloud, TSC) in each
dimension:35

Wspline =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

3
4
− δ2, for j,

1
2
(1

2
± δ), for j ± 1,

(22)

FIG. 3. Leapfrog algorithm for particle pushing and field advancing.

where δ = (x − Xj)/Δx, x is the particle position, j is the nearest
grid/half grid number, and Xj ≡ jΔx. We obtain higher-dimensional
functions as products of 1D shape functions in each dimension:
W2D(i, j) =Wx(i)Wy( j) and W3D(i, j, k) =Wx(i)Wy( j)Wz(k).

F. Time ordering
In SLIPs, the simplest forward method is used to discretize all

differential equations that are reduced to first order with respect
to time.18 To minimize the errors introduced by the discretization,
some variables are updated at integer time steps and others at half-
integer time steps. For example, the EM field variables E and B are
updated alternately at integer and half-integer time steps, and the
position x and momentum p of particles are updated alternately as
well; see Fig. 3. The leapfrog updating is also applied to the current
deposition and field interpolation.

III. QED ALGORITHM
This section presents some SF-QED processes (with unpo-

larized and polarized versions) that are relevant for laser–plasma
interactions. The classical and quantum radiation corrections to
the Newton–Lorentz equations, namely, the Landau–Lifshitz equa-
tion and the modified Landau–Lifshitz equation, and their dis-
cretized algorithms are reviewed first. The classical- and quantum-
corrected equations of motion (EOM) for the spin, namely the
Thomas–Bargmann–Michel–Telegdi equation and its radiative ver-
sion, and their discretized algorithms, are reviewed next. NCS with
unpolarized and polarized version and their Monte Carlo (MC)
algorithms are reviewed. NBW pair production with unpolarized
and polarized versions and their MC implementations are presented
as well. Finally, the implementations of high-energy bremsstrahlung
and vacuum birefringence under the conditions of weak pair
production (χγ ≲ 0.1) are briefly discussed.

A. Radiative particle pusher
Charged particles moving in strong fields can emit either classi-

cal fields or quantum photons. This leads to energy/momentum loss
and braking of the particles, i.e., radiation reaction. A well-known
radiative EOM for charged particles is the Lorentz–Abraham–Dirac
(LAD) equation.36 However, this equation suffers from the runaway
problem, since the radiation reaction terms involve the derivative
of the acceleration. To overcome this issue, several alternative for-
malisms have been proposed, among which the Landau–Lifshitz
(LL) version is widely adopted.37 The LL equation can be obtained
from the LAD equation by applying iterative and order-reduction
procedures,38,39 which are valid when the radiation force is much
smaller than the Lorentz force. More importantly, in the limit of

Matter Radiat. Extremes 8, 064002 (2023); doi: 10.1063/5.0163929 8, 064002-4

© Author(s) 2023

https://pubs.aip.org/aip/mre


Matter and
Radiation at Extremes

RESEARCH ARTICLE pubs.aip.org/aip/mre

h → 0, the QED results in a planewave background field are con-
sistent with both the LAD and LL equations.40,41 Depending on
the value of the quantum nonlinear parameter χe (defined in
Sec. III A 1), the particle dynamics can be governed by either the
LL equation or its quantum-corrected version.1,23,37,42

1. Landau–Lifshitz (LL) equation
The LL equation can be employed when the radiation is rela-

tively weak (weak radiation reaction, χe ≪ 10−2),37 and, in Gaussian
units, takes the form

FRR,classical

= 2e3

3mc3

⎧⎪⎪⎨⎪⎪⎩
γ[( ∂

∂t
+ p
γm
⋅ ∇)E + p

γmc
× ( ∂

∂t
+ p
γm
⋅ ∇)B]

+ e
mc
[E × B + 1

γmc
B × (B × p) + 1

γmc
E(p ⋅ E)]

− eγ
m2c2 p

⎡⎢⎢⎢⎢⎣
(E + p

γmc
× B)

2

− 1
γ2m2c2 (E ⋅ p)

2
⎤⎥⎥⎥⎥⎦

⎫⎪⎪⎬⎪⎪⎭
. (23)

The dimensionless form of this equation is

FRR,classical =
2
3
α f ξL

⎧⎪⎪⎨⎪⎪⎩
γ[( ∂

∂t
+ p
γ
⋅ ∇)E + p

γ
× ( ∂

∂t
+ p
γ
⋅ ∇)B]

+ [E × B + 1
γ

B × (B × p) + E(p ⋅ E)]

− γp
⎡⎢⎢⎢⎢⎣
(E + p

γ
× B)

2

− 1
γ2 (E ⋅ p)

2
⎤⎥⎥⎥⎥⎦

⎫⎪⎪⎬⎪⎪⎭
, (24)

where α f = e2/ch is the fine structure constant and ξL = hω/mec2 is
the normalized reference photon energy. In the case of an ultrain-
tense laser interacting with a plasma, the dominant contribution
comes from the last two terms.43 In the ultrarelativistic limit,
only the third term dominates the contribution, and the radiation
reaction force can be simplified as

FRR,cl ≃
2
3
α f
χ2

e

ξL
β, (25)

where

χe =
eh̵

m3c4

√
∣Fμνpν∣2

≡ ξLγe

√
(E + β × B)2 − [β ⋅ (β ⋅ E)]2

≃ γeE�ξL(1 − cos θ)

is a nonlinear quantum parameter signifying the strength of the
NCS, with θ denoting the angle between the electron momentum
and the EM field wavevector and E� denoting the perpendicular
component of the electric field. This reduced form gives the impor-
tance of the radiation reaction when one estimates the ratio between
FRR and the Lorentz force FL:

ℛ ≡ ∣FRR∣/∣FL∣

∼ 2
3
α f γeχe ≃ 2 × 10−8a0γ2

e (for wavelength 1 μm). (26)

FIG. 4. q(χ) vs χ.

Clearly, once γ2
e a0 ≳ 106, the radiation reaction force should be

considered.

2. Modified Landau–Lifshitz (MLL) equation
The LL equation is only applicable when the radiation reac-

tion force is much weaker than the Lorentz force, or the radiation
per laser period is much smaller than mec2.44 Once χe is larger than
10−2, the quantum nature of the radiation dominates the process. On
the one hand, the radiation spectrum will be suppressed and deviate
from the radiation force in the LL equation; on the other hand, the
radiation will be stochastic and discontinuous. However, when the
stochasticity is not relevant for detection and one only cares about
the average effect (integrated spectra), a correction to the radiation
force can be made, i.e., a quantum correction45–48

FRR,quantum = q(χ)FRR,classical, (27)

where

q(χ) = IQED

IC
, (28)

IQED = mc2 ∫ c(k ⋅ k′) dWf i

dηdr0
dr0, (29)

IC =
2e4E′2

3m2c3 , (30)

with Wfi being the radiation probability,49 η = k0z − ω0t, r0 = 2(k ⋅
k′)/3χ(k ⋅ pi), and E′ is the electric field in the instantaneous frame
of the electron. pi is the four-momentum of the electron before radi-
ation. k and k′ are the four-wavevectors of the local EM field and
the radiated photon, respectively. See q(χ) in Fig. 4. Here, the ratio
between the QED radiation power and the classical one, i.e., the
re-scaling factor q(χ), is the same as the factor in Ref. 44:

q(χe) ≈
1

[1 + 4.8(1 + χe) ln (1 + 1.7χe) + 2.44χ2
e ]

2/3 , (31)

or

q(χe) ≈
1

(1 + 8.93χe + 2.41χ2
e )2/3 . (32)

In the ultrarelativistic limit, the following alternative formula
can be employed:23,50

FRR,quantum = q(χ)Pclχ
2
eβ/β2c. (33)

Clearly, once χ ≳ 10−2, the quantum-corrected version should be
used.
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FIG. 5. Dynamics of an electron [p0 = (4000, 0, 0)] scattering with an ultrain-

tense linearly polarized laser pulse of Ey = 100 exp [−( ϕ−100
10π )

2
] cos ϕ, with

ϕ ≡ t + x. Here, Lo., LL., and MLL. denote results calculated from the Lorentz,
LL, and modified LL equations, respectively.

3. Algorithms for the radiative pusher
Here, we plug the radiative correction (either classical or

quantum corrected version) into the standard Boris pusher as
follows:43

pn+1/2 − pn−1/2

Δt
= Fn = Fn

L + Fn
R. (34)

First we use the Boris step

pn+1/2
L − pn−1/2

L
Δt

= Fn
L, (35)

and then use the radiative correction push

pn+1/2
R − pn−1/2

R
Δt

= Fn
R, (36)

where pn−1/2
L = pn−1/2

R = pn−1/2, and the final momentum is given by

pn+1/2 = pn+1/2
L + pn+1/2

R − pn−1/2 = pn+1/2
L + Fn

RΔt. (37)

With this algorithm, the Boris pusher is realized.
Figure 5 presents a comparison between dynamics calculated

using different solvers. For the Lorentz equation without radiation,
the particle momentum and energy are given analytically by51

p(τ) = p0 −A(τ) + k̂
A2(τ) − 2p0 ⋅A(τ)

2(γ0 − p0 ⋅ k̂)
(38)

γ(τ) = γ0 +
A2(τ) − 2p0 ⋅A(τ)

2(γ0 − p0 ⋅ k̂)
(39)

where A(τ) = −∫ ττ0
E(τ′)dτ′ is the external field vector potential, τ

is the proper time, k̂ is the normalized wavevector of the field, and
γ, p, and γ0, p0 are the instantaneous and initial (subscript 0) Lorentz
factor and momentum of the particle, respectively. For a planewave
with a temporal profile, the momentum and energy gain vanish as
A(∞) = A(−∞) = 0. The planewave solution with radiation reac-
tion can be found in Ref. 52. However, no explicit solution exists
when the quantum correction term is included, as shown in Fig. 5.

B. Spin dynamics
The consideration of electron/positron spin becomes crucial in

addition to the kinetics when plasma electrons are polarized or when

there is an ultrastrong EM field interacting with electrons/positrons
and γ-photons. The significance of this aspect has been highlighted
in the recent literature, particularly in the context of relativistic
charged particles in EM waves and laser–matter interactions.53,54

This issue can be addressed either by employing the computational
Dirac solver55 or by utilizing the Foldy–Wouthuysen transformation
and the quantum operator formalism, such as through the reduction
of the Heisenberg equation to a classical precession equation.56,57

However, these approaches are not directly applicable to many-
particle systems. Here and throughout this paper, the spin is defined
as a unit vector S. In the absence of radiation, the electron/positron
spin precesses around the magnetic field in the rest frame and can
be described by the classical Thomas–Bargmann–Michel–Telegdi
(T-BMT) equation. This equation is equivalent to the quantum-
mechanical Heisenberg equation of motion for the spin operator or
the polarization vector of the system.7,56,57 When radiation becomes
significant, the electron/positron spin also undergoes flipping to
quantized axes, typically aligned with the magnetic field in the
rest frame. By neglecting stochasticity, this effect can be appropri-
ately accounted for by incorporating the radiative correction to the
T-BMT equation, which is analogous to the quantum correction to
the LL equation.

1. Thomas–Bargmann–Michel–Telegdi (T-BMT)
equation

The nonradiative spin dynamics of an electron are given by

(dS
dt
)

T
= S ×Ω

≡ S × [−( g
2
− 1) γe

γe + 1
(β ⋅ B) ⋅ β

+ ( g
2
− 1 + 1

γe
)B − ( g

2
− γe

γe + 1
)β × E], (40)

where E and B are the normalized electric and magnetic fields and
g is the electron Landé factor. Since the this equation is a pure
rotation around the precession frequency of Ω, Boris rotation is
greatly preferable to other solvers for ordinary differential equations
(Runge–Kutta, etc.). Here, Ω plays the role of B/γ in Eqs. (3) and
(5)–(10). For other particle species, the appropriate charge, mass,
and Landé factor should be employed.

2. Radiative T-BMT equation
When radiation damping is no longer negligible, the radiation

can also affect the spin dynamics. In the weak radiation regime, this
radiation-induced modification of the spin dynamics can be handled
in a similar way as in the LL equation. Thus, the modified version of
the T-BMT equation, the radiative T-BMT equation, is given by

dS
dt
= (dS

dt
)

T
+ (dS

dt
)

R
, (41)

with the first (labeled with “T”) and second (labeled with “R”) terms
corresponding to the nonradiative precession in Eq. (40) and the
radiative correction, respectively. The radiative term is given by

(dS
dt
)

R
= −P[ψ1(χ)S + ψ2(χ)(S ⋅ β)β + ψ3(χ)n̂B]. (42)
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Here,

P = α f√
3πγeξL

, ψ1(χe) = ∫
∞

0
u′′ du K2/3(u′),

ψ2(χe) = ∫
∞

0
u′′ du∫

∞

u′
dx K1/3(x) − ψ1(χe),

ψ3(χ) = ∫
∞

0
u′′ duK1/3(u′), u′ = 2u

3χe
, u′′ = u2

(1 + u)3 ,

where Kn is the nth-order modified Bessel function of the second
kind, n̂B = β × â, and β and â denote the normalized velocity and
acceleration vectors, respectively.58,59

3. Algorithms for simulating spin precession
The simulation algorithms for spin precession are quite similar

to those for the EOM (the Lorentz equation and radiative EOM),
namely, the LL/MLL equations. Therefore, the T-BMT equation is
simulated via Boris rotation without the pre- and post-acceleration
terms, and with only the rotation term Ω. In SLIPs, a standard Boris
algorithm is used:

S′ = Sn−1/2 + Sn−1/2 × t, (43)

Sn+1/2 = Sn−1/2 + S′ × o, (44)

t = qΔt
2
Ωn, (45)

o = 2t
1 + t2 . (46)

For the radiative T-BMT equation, there will be an extra term
(dS/dt)R, which is equivalent to the electric field term in the Lorentz
equation. Therefore, the straightforward algorithm is given by

Sn−1/2
T = Sn−1/2 + Δt

2
(dS

dt
)

R
, (47)

Boris T-BMT Eqs. (43)–(46),

Sn+1/2 = Sn+1/2
T + Δt

2
(dS

dt
)

R
. (48)

Figure 6 presents a comparison between the T-BMT and radia-
tive T-BMT equations for different cases: Lorentz equation + T-
BMT equation (A), Lorentz equation + radiative T-BMT equation
(B), LL equation + radiative T-BMT equation (C), and MLL equa-
tion + radiative T-BMT equation (D). The evolution of each spin
component depends on different terms. In our setup, the magnetic
field is along the z direction, and so the spin precession occurs in
the x–y plane, affecting Sx and Sy. The radiation reaction mainly
affects Sz . In the case without radiation reaction (case A), Sx and
Sy oscillate owing to precession and are conserved in Fig. 6(d). In
the case with only spin radiation reaction (case B), Sx is strongly
damped by the term (dS/dt)R. Sy and Sz oscillate owing to the
combined effects of precession and radiation reaction, as shown
in Figs. 6(a) and 6(b). When both spin and momentum radia-
tion reactions are included (case C), the particle momentum and
energy decrease, i.e., γe decreases, which lowers the spin radiation

FIG. 6. Spin dynamics of an electron [p0 = (4000, 0, 0), s0 = (1, 0, 0)]
scattering with an ultraintense linearly polarized laser pulse of

Ey = 100 exp [−( ϕ−100
10π )

2
] cos ϕ, with ϕ ≡ t + x. Here, A, B, C, and D

denote results calculated using the Lorentz + T-BMT, Lorentz + radiative T-BMT,
LL + radiative T-BMT, and MLL + radiative T-BMT equations, respectively.

reaction term (dS/dt)R(χe) and the damping of Sx and Sz [see
Fig. 6(c) for a comparison of cases B, D, and C in terms of Sz ampli-
tude]. Simultaneously, the precession term (dS/dt)T ∝ B/γe grows
with decreasing γe, which amplifies the oscillation of Sy, as shown by
the contrast between B (Lorentz), D (MLL), and C (LL) in Fig. 6(b).

C. Nonlinear Compton scattering (NCS)
When the radiation is strong (χe ≳ 0.1), its stochastic nature

can no longer be neglected in the laser–beam/plasma interactions.
Also, the photon dynamics should be taken into account. In this
regime, the full stochastic quantum process is required to describe
the strong radiation, i.e., nonlinear Compton scattering (NCS).2,60,61

Therefore, the radiation reaction and photon emission process will
be calculated via MC simulation based on the NCS probabilities. The
electron/positron spin and the polarization of the NCS photons will
be also included in the MC simulations.

1. Spin-resolved/summed NCS
When the laser intensity a0 and the electron energy γe are such

that the locally constant cross-field approximation (LCFA) is valid,
i.e., a0 ≫ 1, χe ≳ 1, the polarization- and spin-resolved emission rate
for the NCS is given by12,15,62

d2Wf i

du dt
= WR

2
(F0 + ξ1F1 + ξ2F2 + ξ3F3), (49)

where the photon polarization is represented by the Stokes para-
meters (ξ1, ξ2, ξ3), defined with respect to the axes P̂1 = â −
n̂(n̂ ⋅ â) and P̂2 = n̂ × P̂1,63 with the photon emission direction
n̂ = pe/∣pe∣ along the momentum pe of the ultrarelativistic electron.
The variables introduced in Eq. (49) are as follows:

F0 = −(2 + u)2[Int K1/3(u′) − 2K2/3(u′)](1 + Si f )
+ u2(1 − Si f )[Int K1/3(u′) + 2K2/3(u′)] + 2u2Si f Int K1/3(u′)
− (4u + 2u2)(S f + Si) ⋅ [n̂ × â]K1/3(u′) − 2u2(S f − Si)
⋅ [n̂ × â]K1/3(u′) − 4u2[Int K1/3(u′) − K2/3(u′)]
× (Si ⋅ n̂)(S f ⋅ n̂), (50)
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F1 = −2u2 Int K1/3(u′){(Si ⋅ â)S f ⋅ [n̂ × â] + (S f ⋅ â)Si ⋅ [n̂ × â]}
+ 4u[(Si ⋅ â)(1 + u) + (S f ⋅ â)]K1/3(u′)
+ 2u(2 + u)n̂ ⋅ [S f × Si]K2/3(u′), (51)

F2 = −{2u2{(Si ⋅ n̂)S f ⋅ [n̂ × â] + (S f ⋅ n̂)Si ⋅ [n̂ × â]}
+ 2u(2 + u)â ⋅ [S f × Si]}K1/3(u′) − 4u[(Si ⋅ n̂)
+ (S f ⋅ n̂)(1 + u)]Int K1/3(u′) + 4u(2 + u)
× [(Si ⋅ n̂) + (S f ⋅ n̂)]K2/3(u′), (52)

F3 = 4[1 + u + (1 + u + 1
2

u2)Si f −
1
2

u2(Si ⋅ n̂)(S f ⋅ n̂)]K2/3(u′)

+ 2u2{Si ⋅ [n̂ × â]S f ⋅ [n̂ × â] − (Si ⋅ â)(S f ⋅ â)}Int K1/3(u′)
− 4u{(1 + u)Si[n̂ × â] + S f [n̂ × â]}K1/3(u′), (53)

where

WR =
α f

8
√

3πξL(1 + u)3 , u′ = 2u
3χ

, u = ωγ
εi − ωγ

,

ωγ is the emitted photon energy, εi is the electron energy before
radiation, â = a/∣a∣ is the direction of the electron acceleration a,
Si and S f are the electron spin vectors respectively before and after
radiation (∣Si∣ = ∣S f ∣ = 1), and Sif ≡ Si ⋅ S f . The function Int K1/3 is
defined as follows:

Int K1/3(u′) ≡ ∫
∞

u′
dz K1/3(z).

By summing over the photon polarizations, the electron spin-
resolved emission probability can be written as12,15,64

d2Wf i

dudt
=WR{−(2 + u)2[Int K1/3(u′) − 2K2/3(u′)](1 + Si f )

+ u2[Int K1/3(u′) + 2K2/3(u′)](1 − Si f )
+ 2u2Si f Int K1/3(u′) − (4u + 2u2)(S f + Si)[n × â]
× K1/3(u′) − 2u2(S f − Si)[n × â]K1/3(u′)
− 4u2[Int K1/3(u′) − K2/3(u′)](Si ⋅ n)(S f ⋅ n)}, (54)

and by summing over the final states S f , the initial spin-resolved
radiation probability is obtained:

d2Wf i

du dt
= 8WR{−(1 + u)Int K1/3(u′)

+ (2 + 2u + u2)K2/3(u′) − uSi ⋅ [n × â]K1/3(u′)}. (55)

By averaging the electron initial spin, one obtains the widely used
radiation probability for the unpolarized initial particles.5,45,65

During the photon emission simulation, the electron/positron
spin transitions to either a parallel or antiparallel orientation with
respect to the spin quantized axis (SQA), depending on the occur-
rence of emission. Upon photon emission, the SQA is chosen to
obtain the maximum transition probability, which is along the
energy-resolved average polarization

SR
f =

g
w + f ⋅ Si

. (56)

This is obtained by summing over the photon polarization and
retains the dependence on the initial and final electron spin:

d2Wrad

du dt
=Wr(w + f ⋅ Si + g ⋅ S f ), (57)

where

w = −(1 + u)K1/3(ρ′) + (2 + 2u + u2)K2/3(ρ′),
f = u Int K1/3(ρ′)v̂ × â,

g = −(1 + u)[K1/3(ρ′) − 2K2/3(ρ′)]Si

− (1 + u)u Int K1/3(ρ′)v̂ × â

− u2[K1/3(ρ′) − K2/3(ρ′)](Si ⋅ v̂)v̂.

Conversely, without emission, the SQA aligns with another
SQA.12,66 In both cases, the final spin is determined by assessing
the probability density for alignment, either parallel or antiparal-
lel, with the SQA. We account for the stochastic spin flip during
photon emission using four random numbers r1,2,3,4 ∈ [0, 1). The
procedure is as follows. First, at each simulation time step Δt,
a photon with energy ωγ = r1γe is emitted if the spin-dependent
radiation probability in Eq. (55), P ≡ d2Wf i(χe, r1, γe, Si)/du dt ⋅ Δt,
meets or exceeds r2, following the so-called von Neumann rejection
method. The final momenta of the electron and photon are given by
p f = (1 − r1)pi and k = r1pi, respectively. Next, the electron spin
flips either parallel (spin-up) or antiparallel (spin-down) to the
SQA with probabilities Pflip ≡W↑

f i/P and W↓

f i/P, respectively, where
W↑,↓

f i ≡ d2W↑,↓
f i /du dt ⋅ Δt from Eq. (57). In other words, the final spin

S f will flip parallel to the SQA if r3 < Pflip, and vice versa; see the
flow chart of NCS in Fig. 7. In the alternative scenario, i.e., when no
photon is emitted, the average final spin is given by

S f =
Si(1 −WΔt) − fΔt
1 − (W + f ⋅ Si)Δt

,

where

W ≡ 16WR[−(1 + u)Int K1/3(u′) + (2 + 2u + u2)K2/3(u′)]

and f ≡ −16WRn × âK1/3(u′).12,66 Then, the SQA is given by S f /∣S f ∣,
and the probability for the aligned case is given by ∣S f ∣ and that for
the antiparallel case by 1 − ∣S f ∣.

Finally, the polarization of the emitted photon is determined
under the assumption that the average polarization is in a mixed
state. The basis for the emitted photon is chosen as two orthogo-
nal pure states with Stokes parameters ξ̂± ≡ ±(ξ1, ξ2, ξ3)/ξ0, where

ξ0 ≡
√
(ξ1)2 + (ξ 2)2 + (ξ 3)2. The probabilities of photon emission

in these states, W±

f i , are given by Eq. (49). A stochastic procedure
is defined using the fourth random number r4: if W+

f i /Wf i ≥ r4,
the polarization state ξ̂+ will be chosen; otherwise, the polar-
ization state will be assigned as ξ̂−. Here, Wf i ≡WRF0 and W±

f i

≡WR(F0 +∑ j=1,3 ξ
±

j F j).
Between photon emissions, the electron dynamics in the exter-

nal laser field are described by the Lorentz equation dp/dt = −e
(E + β × B) and are simulated using the Boris rotation method,
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FIG. 7. Flowchart of spin- and polarization-resolved NCS.

as shown in Eqs. (5)–(10). Owing to the smallness of the
emission angle for an ultrarelativistic electron, the photon is
assumed to be emitted along the parental electron velocity, i.e.,
p f ≈ (1 − ωγ/∣pi∣)pi. Besides, in this simulation, interference effects
between emissions in adjacent coherent lengths (l f ≃ λL/a0) are
negligible when the employed laser intensity is ultrastrong, i.e.,
a0 ≫ 1. Therefore, the photon emissions occurring in each coherent
length are independent of each other.

Examples of the electron dynamics and spin can be seen in
Fig. 8: clearly, the average value matches the MLL equations for

FIG. 8. Dynamics of 1000 electrons via stochastic NCS, with the simulation para-
meters the same as those in Fig. 6. Blue lines are for ten sampled electrons, and
black ones are the average value over 1000 sample particles.

dynamics and the MLL + radiative T-BMT equations for spins. The
beam evolution is also shown in Fig. 9. The energy spectra of elec-
trons and photons, as well as the photon polarization, can be seen in
Fig. 10.

FIG. 9. Dynamics of an electron beam (particle number Ne = 104), with colors
denoting the number density in arbitrary units and a logarithmic scale (a.u.); other
parameters are the same as those in Fig. 6.

FIG. 10. (a) Energy spectra of scattered electrons (black curve) and generated
photons (red curve). (b) Energy-dependent Stokes parameters ξ̄2 and ξ̄3, i.e.,
circular and linear polarization with respect to the y and z axes. The simulation
parameters are the same as those in Fig. 6.
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2. Definition and transformation of Stokes parameters
In the context of NCS and the subsequent nonlinear

Breit–Wheeler pair production, the polarization state of a pho-
ton can be characterized by the polarization unit vector P̂, which
functions as the spin component of the photon wavefunction. An
arbitrary polarization P̂ can be represented as a superposition of two
orthogonal basis vectors:67

P̂ = cos (θα)P̂1 + sin (θα)P̂2eiθβ , (58)

where θα denotes the angle between P and P̂1, while θβ represents
the absolute phase. In quantum mechanics, the photon polarization
state corresponding to P can be described by the density matrix

ρ = 1
2
(1 + ξ ⋅ σ) = 1

2

⎛
⎜
⎝

1 + ξ3 ξ1 − iξ2

ξ1 + iξ2 1 − ξ3

⎞
⎟
⎠

, (59)

where σ is the Pauli matrix, and ξ = (ξ1, ξ2, ξ3) denotes the Stokes
parameters, with ξ1 = sin(2θα)cos(θβ), ξ2 = sin(2θα) sin(θβ), and
ξ3 = cos(2θα).

Calculation of the probability of pair creation requires transfor-
mation of the Stokes parameters from the initial frame of the photon
(P̂1, P̂2, n̂) to the frame of pair production (P̂′1, P̂′2, n̂). The vector P̂′1
is given by [E − n̂ ⋅ (n̂ ⋅ E) + n̂ × B]/∣E − n̂ ⋅ (n̂ ⋅ E) + n̂ × B∣, and the
vector P̂′2 is obtained by taking the cross product of n̂ and P̂′1. Here,
n̂ represents the direction of propagation of the photon, and E and B
are the electric and magnetic fields. The two groups of polarization
vectors are connected via rotation through an angle ψ:

P̂′1 = P̂1 cos (ψ) + P̂2 sin (ψ), (60)

P̂′2 = −P̂1 sin (ψ) + P̂2 cos (ψ). (61)

Thus, the Stokes parameters with respect to the vectors P̂′1, P̂′2, and
n̂ are as follows:

ξ′1 = ξ1 cos (2ψ) − ξ3 sin (2ψ),
ξ′2 = ξ2,

ξ′3 = ξ1 sin (2ψ) + ξ3 cos (2ψ),
(62)

which is equivalent to a rotation:68,69

⎛
⎜⎜⎜⎜
⎝

ξ′1
ξ′2
ξ′3

⎞
⎟⎟⎟⎟
⎠
=
⎛
⎜⎜⎜⎜
⎝

cos 2ψ 0 − sin 2ψ

0 1 0

sin 2ψ 0 cos 2ψ

⎞
⎟⎟⎟⎟
⎠

⎛
⎜⎜⎜⎜
⎝

ξ1

ξ2

ξ3

⎞
⎟⎟⎟⎟
⎠
≡ ROT(ψ) ⋅ ξ. (63)

D. Nonlinear Breit–Wheeler (NBW) pair production
When the energy of a photon exceeds the rest mass of an

electron–positron pair, i.e., ωγ ≥ 2mec2, and the photon is sub-
jected to an ultraintense field a0 ≫ 1, the related nonlinear quantum

parameter χγ can reach unity. Here, χγ ≡ (eh̵2/m3c4)
√
∣Fμνkν∣2 and

is approximately equal to 2a0ωγξL in the colliding geometry. In
this scenario, the photon can decay into an electron–positron pair

through the nonlinear Breit–Wheeler pair production (NBW) pro-
cess (ωγ + nωL → e+ + e−).2 In Refs. 25, 64, and 70, 71 a spin- and
polarization-resolved NBW MC method was proposed, and here we
follow the methods described in detail in Ref. 72.

1. NBW probability
The polarization-resolved NBW probability rate with depen-

dence on the positron energy is given by

d2W±

pair

dε+ dt
= 1

2
(G0 + ξ1G1 + ξ2G2 + ξ3G3), (64)

where the polarization-independent term G0 and polarization-
related terms G1,2,3 are given by

G0 =
W0

2
{Int K1/3(ρ) +

ε2
− + ε2

+

ε−ε+
K2/3(ρ)

+ [Int K1/3(ρ) − 2K2/3(ρ)](S− ⋅ S+)

+ K1/3(ρ)[−
εγ
ε+
(S+ ⋅ b̂+) +

εγ
ε−
(S− ⋅ b̂+)]

+ [ ε
2
− + ε2

+

ε−ε+
Int K1/3(ρ) −

(ε+ − ε−)2

ε−ε+
K2/3(ρ)]

× (S+ ⋅ v̂+)(S− ⋅ v̂+)}, (65)

G1 =
W0

2
{K1/3(ρ)[−

εγ
ε−
(S+ ⋅ â+) +

εγ
ε+
(S− ⋅ â+)]

+ ε
2
+ − ε2

−

2ε−ε+
K2/3(ρ)(S− × S+) ⋅ v̂+ −

ε2
γ

2ε−ε+
Int K1/3(ρ)

× [(S+ ⋅ â)(S− ⋅ b̂) + (S− ⋅ â+)(S+ ⋅ b̂+)]}, (66)

G2 =
W0

2
{ ε2

γ

2ε−ε+
K1/3(ρ)(S− × S+) ⋅ â+ +

ε2
+ − ε2

−

2ε−ε+
K1/3(ρ)

× [(S− ⋅ v̂+)(S+ ⋅ b̂+) + (S+ ⋅ v̂+)(S− ⋅ b̂+)]

+ [ εγ
ε−

Int K1/3(ρ) −
ε2
+ − ε2

−

ε−ε+
K2/3(ρ)](S− ⋅ v̂+)

+ [ εγ
ε+

Int K1/3(ρ) +
ε2
+ − ε2

−

ε−ε+
K2/3(ρ)](S+ ⋅ v̂+)}, (67)

G3 =
W0

2
{ − K2/3(ρ) +

ε2
− + ε2

+

2ε−ε+
K2/3(ρ)(S− ⋅ S+) − K1/3(ρ)

× [ εγ
ε+
(S− ⋅ b̂+) −

εγ
ε−
(S+ ⋅ b̂+)] +

ε2
γ

2ε−ε+
Int K1/3(ρ)

× [(S+ ⋅ b̂+)(S− ⋅ b̂+) − (S+ ⋅ â+)(S− ⋅ â+)]

− (ε+ − ε−)
2

2ε−ε+
K2/3(ρ)(S+ ⋅ v̂+)(S− ⋅ v̂+)}, (68)

where
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W0 =
α√

3πω′2γ
, ω′γ =

εγ
mec2 ,

ρ = 2ε2
γ

3χγε−ε+
= 2

3δ(1 − δ) , δ = ε+
εγ

,

α is the fine structure constant, εγ, ε−, and ε+ are the energies of
the parent photon and the created electron and positron, respec-
tively, v̂+ = v+/∣v+∣ (with v+ the positron velocity), â+ = a+/∣a+∣
(with a+ the positron acceleration in the rest frame of the positron),
b̂+ = v+ × a+/∣v+ × a+∣, ξ1, ξ2, and ξ3 are the Stokes parameters of
the γ-photon, and S+ and S− are the positron and electron spin vec-
tors, respectively. Kn is again the nth-order modified Bessel function
of the second kind, and the function Int K1/3 is defined after Eq. (53).
Note that the Stokes parameters must be transformed from the pho-
ton initial frame (P̂1, P̂2, n̂) to the pair production frame (P̂′1, P̂′2, n̂);
see the transformations of the Stokes parameters in Sec. III C 2.

By summing over the electron spin, the pair production proba-
bility depending on the positron spin S+ and the photon polarization
ξ is obtained as

d2W+

pair

dε+ dt
=W0{Int K1/3(ρ) +

ε2
− + ε2

+

ε−ε+
K2/3(ρ)

− εγ
ε+

K1/3(ρ)(S+ ⋅ b̂+) − ξ1[
εγ
ε−

K1/3(ρ)(S+ ⋅ â+)]

+ ξ2[
ε2
+ − ε2

−

ε−ε+
K2/3(ρ) +

εγ
ε+

Int K1/3(ρ)](S+ ⋅ v̂+)

− ξ3[K2/3(ρ) −
εγ
ε−

K1/3(ρ)(S+ ⋅ b̂+)]}. (69)

This can be rewritten as

d2W+

pair

dε+ dt
=W0(C + S+ ⋅D), (70)

where

C = Int K1/3(ρ) +
ε2
− + ε2

+

ε−ε+
K2/3(ρ) − ξ3K2/3(ρ), (71)

D = −( εγ
ε+
− ξ3

εγ
ε−
)K1/3(ρ)b̂+ − ξ1

εγ
ε−

K1/3(ρ)â+

+ ξ2[
ε2
+ − ε2

−

ε−ε+
K2/3(ρ) +

εγ
ε+

Int K1/3(ρ)]v̂+. (72)

When a photon decays to a pair, the positron spin state is instan-
taneously collapsed into one of its basis states defined by the
instantaneous SQA, along the energy-resolved average polarization
S(ε+)
+
= D/C.

Similarly, by summing over the positron spin, the pair produc-
tion probability depending on the electron spin S− and the photon
polarization is obtained as

d2W−

pair

dε+ dt
=W0(C + S− ⋅D′), (73)

D′ = ( εγ
ε−
− ξ3

εγ
ε+
)K1/3(ρ)b̂+ + ξ1

εγ
ε+

K1/3(ρ)â+

− ξ2[
ε2
+ − ε2

−

ε−ε+
K2/3(ρ) −

εγ
ε−

Int K1/3(ρ)]v̂+. (74)

The pair production probability, depending solely on the pho-
ton polarization, is determined by summing over both positron and
electron spins:

d2Wpair

dε+ dt
= 2W0{Int K1/3(ρ) +

ε2
− + ε2

+

ε−ε+
K2/3(ρ) − ξ3K2/3(ρ)}. (75)

2. MC algorithm
The algorithm for simulating pair creation with polarization

is illustrated in Fig. 11. At every simulation step Δt, a pair is gen-
erated with positron energy ε+ = r1εγ when the probability density
P ≡ d2Wpair/dε+dt ⋅ Δt of pair production is greater than or equal
to a random number r2 within the range [0, 1). Here, d2Wpair/dε+dt
is computed using Eq. (75). The momentum of the created positron
(electron) is parallel to that of the parent photon, and the energy of
the electron ε− is determined as εγ − ε+. The final spin states of the
electron and positron are determined by the four probability den-
sities P1,2,3,4, each representing spin parallel or antiparallel to the
SQA, where P1,2,3,4 is computed from Eq. (64). Finally, a random
number r3 is used to sample the final spin states for the electron and
positron. Note that here all random numbers are sampled uniformly
from [0, 1), as in the NCS algorithm. An example of the produc-
tion of secondary electrons and positrons resulting from a collision
between a laser and an electron beam is illustrated in Fig. 12.

E. High-energy bremsstrahlung
High-energy bremsstrahlung is another important emission

mechanism, and it can also be modeled using an MC collision
model.73 The MC collision model was tested using the Geant4
code,74 and the results are presented here. The bremsstrahlung
emission is described by the cross-section from Ref. 75:

dσeZ

dω
(ω, y)

= αr2
0

ω
{(4

3
− 4

3
y + y2)[Z2(ϕ1 −

4
3

ln Z − 4 f ) + Z(ψ1 −
8
3

ln Z)]

+ 2
3
(1 − y)[Z2(ϕ1 − ϕ2) + Z(ψ1 − ψ2)]}, (76)

where y = hω/Ee is the ratio of the energy of the emitted photon to
that of the incident electron, r0 is the classical electron radius, the
functions ϕ1,2 and ψ1,2 depend on the screening potential by atomic
electrons, and f is the Coulomb correction term. When the atomic
number of the target is greater than 5, we use Eqs. (3.38)–(3.41)
from Ref. 75 to calculate these functions. However, for targets with
Z < 5, the approximate screening functions are unsuitable and
require modification.

The PENELOPE code76 utilizes another method, which
involves tabulated data from Ref. 77. This method transforms
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FIG. 11. Flowchart of the spin- and polarization-resolved nonlinear Breit–Wheeler (NBW) pair production process.

the “scaled” bremsstrahlung differential cross-section (DCS) to a
differential cross-section as follows:76

dσbr

dω
= Z2

β2
1
ω
χ(Z, Ee, y), (77)

where β = v/c is the normalized electron velocity. Integrating this
expression over the photon frequencies yields a tabulated total
cross-section σbr(Ee, y) for MC simulation, i.e., the direct sampling
method can be used.

The electron and positron DCS are related by

dσ+br

dω
= Fp(Z, Ee)

dσ−br

dω
, (78)

where Fp(Z, Ee) is an analytical approximation factor that can be
found in Ref. 76. A high level of accuracy was demonstrated in
Ref. 76, with a difference of only ∼0.5% compared with the results
reported in Ref. 78.

The bremsstrahlung implementation is based on direct MC
sampling. Given an incident electron with energy Ee and velocity v,

FIG. 12. (a) Normalized energy spectrum (black solid curve) and energy-resolved
longitudinal spin polarization (red solid curve) of positrons. (b) Statistics of the
longitudinal spin components of generated positrons. The laser and electron beam
parameters are consistent with those in Fig. 9.

the probability of triggering a bremsstrahlung event is calculated as
Pbr = 1 − eΔs/λ, where Δs = vΔt, v = ∣v∣ is the incident particle veloc-
ity, Δt is the time interval, λ = 1/nσ(Ee), n is the target particle
density, and σ(Ee) is the total cross-section. A random number
r1 is then generated and compared with Pbr. If r1 < Pbr, then a
bremsstrahlung event is triggered. The energy of the resulting pho-
ton is determined by generating another random number r2, which
is then multiplied by σbr(Ee) to obtain the energy ratio y through
σ(y, Ee) = σ(Ee)r2. Finally, a photon with energy hω = Eey and
momentum direction k/∣k∣ = v/∣v∣ is generated. To improve com-
putational efficiency, low-energy photons are discarded by setting
a minimum energy threshold. This probabilistic approach is sim-
ilar to the method used to calculate the random free path.76 The
implementation of Bethe–Heitler pair production follows a similar
process.

FIG. 13. Bremsstrahlung of 100 MeV electrons: (a) scattered electron spectra;
(b) yield photon spectra. Solid curves represent PIC results and dashed curves
Geant4 results. Reproduced with permission from F. Wan et al., Eur. Phys. J. D 71,
236 (2017). Copyright 2017, EDP Sciences, SIF, Springer-Verlag GmbH Germany.
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FIG. 14. Bremsstrahlung of 1 GeV electrons: (a) scattered electron spectra; (b)
yield photon spectra. Solid curves represent PIC results and dashed curves
Geant4 results. Reproduced with permission from F. Wan et al., Eur. Phys. J. D 71,
236 (2017). Copyright 2017, EDP Sciences, SIF, Springer-Verlag GmbH Germany.

The implementation of bremsstrahlung emission was tested
using Geant4 software,74 which is widely used for modeling high-
energy particle scattering with detectors. In this study, we utilized
electron bunches of 100 MeV and 1 GeV with 105 primaries, collid-
ing with a 5 mm Au target with Z = 79 and ρ = 19.3 g/cm3 and a
5 mm Al target with Z = 13 and ρ = 2.7 g/cm3. We disabled the field
updater and weighting procedure in the PIC code, and enabled only
the particle pusher and bremsstrahlung MC module. The electron
and photon spectra were found to be in good agreement with the
Geant4 results, except for a slightly higher photon emission in the
high-energy tail (which is due to the difference in the cross-section
data). Figure 13 displays the spectra of electrons and photons from a
100 MeV electron bunch normally incident onto the Al and Au slabs,
and similar distributions for a 1 GeV electron bunch are shown in
Fig. 14.

F. Vacuum birefringence
In addition to the NBW processes, another important pro-

cess for polarized photons in ultraintense laser–matter interactions
is vacuum birefringence (VB). In this paper, we utilize Eq. (4.26)
from Ref. 79 to calculate the refractive index n for a photon with
arbitrary energy ω (wavelength λ) in a constant weak EM field
[∣E∣(∣B∣)≪ Ecr]. We include the electric field and assume relativistic
units c = h = 1. The resulting expression is

FIG. 15. (a) M(χγ) (red and blue solid curves) and the corresponding low-energy-
limit constants, with red and blue dash-dotted lines equal to 4 and 7, respectively.
(b) Relative error between M(χγ) and the low-energy-limit constant.

n ≈ 1 − αχ
2
γm2

16πω2 ∫
1

−1
dυ(1 − υ2)

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

1
2
(1 + 1

3
υ2)

1 − 1
3
υ2

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭

× [πx4/3Gi′(x2/3) − i
x2
√

3
K2/3(

2
3

x)], (79)

where α is the fine structure constant, m is the electron mass, χγ is the
nonlinear quantum parameter as defined earlier, x = 4/[(1 − υ2)χγ],
and Gi′(x) is the derivative of the Scorer function. Ered,� = E� + k̂
× B� is the transverse reduced field (acceleration field for electrons).

The first and second rows in the { ⋅ ⋅ ⋅⋅ ⋅ ⋅ } correspond to the eigen-

modes parallel and perpendicular to the reduced field, respectively.
After extraction of a factor

ALGORITHM 1. VB effect in SLIPs.
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FIG. 16. VB effect of a γ-photon [εγ = 1 GeV, ξ = (1, 0, 0)] propagating through
(a) static crossed fields with Ey = −Bz = 100 and (b) a laser field (the same as in
Fig. 6).

𝒟 = α
90π
( e∣Ered�∣

m2 )
2

≡ α
90π

χ2
γ

ω2/m2 .

and separation into real and imaginary parts, Eq. (79) becomes

Re(n) = 1 − 45
4
𝒟∫

1

0
dυ(1 − υ2)

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

1
2
(1 + 1

3
υ2)

1 − 1
3
υ2

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭
× [πx4/3Gi′(x2/3)], (80)

Im(n) = 45
4
𝒟∫

1

0
dυ(1 − υ2)

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

1
2
(1 + 1

3
υ2)

1 − 1
3
υ2

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭
[ x2
√

3
K2/3(

2
3

x)].

(81)
In the weak-field limit of χγ ≪ 1, the imaginary part associated

with pair production is negligible. We now define

M(χγ) = −
45
4 ∫

1

0
dυ(1 − υ2)

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

1
2
(1 + 1

3
υ2)

1 − 1
3
υ2

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭
πx4/3Gi′(x2/3), (82)

yielding

Re(n) = 1 +M(χγ)𝒟 ≡ 1 +M(χγ)
α

90π
χ2
γ

ω2/m2 . (83)

The numerical results for M(χγ) and comparisons with the low-
energy-limit (ωγ ≪ m) constants are given in Fig. 15.

In the limit of χγ ≪ 1, the real part simplifies to

Re(n) = 1 +𝒟
⎧⎪⎪⎪⎨⎪⎪⎪⎩

4+

7−

⎫⎪⎪⎪⎬⎪⎪⎪⎭
(84)

FIG. 17. Data structure of SLIPs.

FIG. 18. Framework of SLIPs.
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and can be used to simulate the VB effect with good accuracy for
χγ ≪ 1. Note that these results are identical to those in Refs. 79–81.
For large χγ, two interpolated refractive indices are used.

The phase retardation between two orthogonal components is
given by δϕ = ϕ+ − ϕ− = Δn2πl/λ = −3𝒟2πl/λ, where l is the prop-
agation length, and the VB effect is equivalent to a rotation of the
Stokes parameters:

⎛
⎜⎜⎜⎜
⎝

ξ′1
ξ′2
ξ′3

⎞
⎟⎟⎟⎟
⎠
=
⎛
⎜⎜⎜⎜
⎝

cos δϕ − sin δϕ 0

sin δϕ cos δϕ 0

0 0 1

⎞
⎟⎟⎟⎟
⎠

⎛
⎜⎜⎜⎜
⎝

ξ1

ξ2

ξ3

⎞
⎟⎟⎟⎟
⎠
≡ QED(δϕ) ⋅ ξ. (85)

FIG. 19. Generation of polarized electrons: (a) number density
log_{10}(d2N/dθxdθy)(a.u.); (b) spin polarization Sx .

FIG. 20. Generation of LP γ-photons: (a) number density log10(d2N/dθxdθy)

(a.u.); (b) linear polarization ξ3.

The VB effect of the probe photons in the PIC code is simulated
with Algorithm 1.82

For an example of the VB effect, see Fig. 16.

IV. FRAMEWORK OF SLIPS
These physical processes have been incorporated into a spin-

resolved laser–plasma interaction simulation code, known as SLIPs.
The data structure and framework layout are illustrated in Figs. 17
and 18.

As depicted in Fig. 17, SLIPs utilizes a toml file to store simula-
tion information, which is then parsed into a SimInfo structure that
includes domainInfo, speciesInfo, boundaryInfo, laserInfo,
pusherInfo, and other metadata. Subsequently, this metadata are
employed to generate a SimBox that comprises all ParticleList
and Fields, and to define the FieldSolver and EOMSolver and
initialize QED processes.

The internal data structure of SLIPs is constructed using the
open-source numerical library, Armadillo C++.83,84 String expres-
sions are parsed using the ExprTk library.85 The data are then
dumped using serial-hdf5 and merged with external Python scripts
to remove ghost cells.

The spin-resolved processes, i.e., those tagged as Spin-QED
in the diagram in Fig. 18, are implemented in conjunction

FIG. 21. Generation of CP γ-photons with longitudinally polarized electrons: (a)
number density log10(d2N/dθxdθy) (a.u.); (b) circular polarization ∣ξ2∣.

FIG. 22. Laser–plasma interaction via 2D simulation: (a)–(c) spatial distributions of Ex , Ey , and Bz , respectively; (d)–(f) number densities (in logrithm) of target electrons,
generated NBW positrons, and NCS γ-photons, respectively.
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FIG. 23. Photons generated by laser–plasma interaction: (a) number density with respect to energy and angle, i.e., log10(dN2
/dγγdθ) (a.u.) with γγ ≡ ℰγ/mec2 and θ ≡

py/px ; (b) energy- and angle-resolved linear polarization degree ξ̄3; (c) energy-resolved number and polarization distributions; (d) angle-resolved number and polarization
distributions.

with the Lorentz equation. In the coding, the Spin-QED part
is arranged as a sequential series of processes. For exam-
ple, Lorentz and T-BMT are followed by radiative correction,
VB, NBW, and NCS with bremsstrahlung: Lorentz and T − BMT
⇒ Radiative correction⇒ VB⇒ NBW⇒ NCS and Bremss.

V. POLARIZED PARTICLE SIMULATIONS
In this section, we present known results that were cal-

culated from the single-particle mode using SLIPs. The spin-
resolved NCS/NBW are evaluated by generating spin-polarized
electrons/positrons. The simulation setups used in this study are
identical to those described in Refs. 10 and 64.

A. Polarized electron/positron simulation
To simulate the generation of spin-polarized electrons, we

utilized an elliptically polarized laser with an intensity a0 = 30, a
wavelength λ0 = 1 μm, and an ellipticity ay,0/ax,0 = 3%. This laser was
directed toward an ultrarelativistic electron bunch with an energy of
10 GeV, which was produced through laser-wakefield acceleration.
The resulting polarized electrons are depicted in Fig. 19, and show
good agreement with the previously published results in Ref. 25.

B. Polarized γ-photons via NCS
The polarization state of emitted photons can be determined in

spin/polarization-resolved NCS. Here, following Ref. 25, we utilized
a linearly polarized (LP) laser to collide with an unpolarized electron
bunch to generate LP γ-photons. Additionally, we used an LP laser
to collide with a longitudinally polarized electron bunch to gener-
ate circularly polarized (CP) γ-photons, which were also observed
in a previous study.12 The final polarization states of LP and CP
γ-photons are presented in Figs. 20 and 21, respectively.

C. Laser–plasma interactions
Finally, we present a simulation result demonstrating the inter-

action between an ultraintense laser with a normalized intensity

a0 = 1000 and a fully ionized 2 μm thick aluminum target. Note that
this configuration, previously examined in Ref. 86 with a thickness
of 1 μm, employs a thicker target in the present study to enhance
the SF-QED processes. When the laser is directed toward a solid
target, the electrons experience acceleration and heating due to the
laser and plasma fields. As high-energy electrons travel through
the background field, they can emit γ-photons via NCS. The EM
field distribution and number densities of target electrons, NBW
positrons, and NCS γ-photons are shown in Fig. 22, all of which
show good consistency with Ref. 86. The laser is linearly polar-
ized along the y direction, indicating that the polarization frame is
mainly in the y–z plane with two polarization bases e1 ≡ β × β̇ and e2
≡ n̂ × e1, where n̂ denotes the momentum direction of the pho-
ton. The polarization angle-dependence observed in this study is
consistent with previous results in the literature. However, the aver-
age linear polarization degree is ∼60% (ξ̄3 ≃ 0.6), as illustrated

FIG. 24. Positrons generated by laser–plasma interaction: (a) number density with
respect to energy and angle, i.e., dN2

/dγ
+

dθ (a.u.), with γ
+
≡ ε+/mec2 and

θ ≡ arctan(py/px); (b) energy- and angle-resolved spin component Sz ; (c)
normalized angular distribution n(θ) ≡ dN/dθ(a.u.); (d) angular distribu-
tion of Sz (i.e., energy-averaged); (e) normalized energy distribution n(ε+)
≡ dN/dε+ (a.u.).
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in Figs. 23(b) and 23(d). Notably, low-energy photons contribute
primarily to the polarization, as demonstrated in Figs. 23(a) and
23(c). Additionally, during the subsequent NBW process, the self-
generated strong magnetic field couples with the laser field domi-
nating the positrons’ SQA. As a result, the positrons’ polarization
is aligned with the z direction, contingent on their momentum
direction, as shown in Fig. 24. These findings constitute a novel con-
tribution to the investigation of polarization-resolved laser–plasma
interactions.

VI. OUTLOOK
Computer simulation techniques for laser–plasma interactions

are constantly evolving, not only in terms of the accuracy of high-
order or explicit/implicit algorithms, but also in the complexity of
new physics with more degrees of freedom. The rapid development
of ultraintense laser techniques not only provides opportunities for
experimental verification of SF-QED processes in the high-energy-
density regime (which serves as a micro-astrophysics laboratory),
but also presents challenges to theoretical analysis. The introduction
of Spin-QED into widely accepted PIC algorithms may address this
urgent demand and pave the way for studies in laser-QED physics,
laser–nuclear physics (astrophysics), and even physics beyond the
Standard Model.
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